Every Sun-like star will eventually evolve into a red giant, a transition which can profoundly affect the evolution of a surrounding planetary system. The timescale of dynamical planet evolution and orbital decay has important implications for planetary habitability, as well as post-main-sequence star and planet interaction, evolution, and internal structure. Here, we investigate these effects by estimating planet occurrence around 2476 low-luminosity red giant branch (LLRGB) stars observed by the NASA K2 mission. We measure stellar masses and radii using asteroseismology, with median random uncertainties of 3.7% in mass and 2.2% in radius. We compare this planet population to the known population of planets around dwarf Sun-like stars, accounting for detection efficiency differences between the stellar populations. We find that 0.49%+/-0.28% of LLRGB stars host planets larger than Jupiter with orbital periods less than 10 days, tentatively higher than main-sequence stars hosting similar planets (0.15%+/-0.06%). Our results suggest that the effects of stellar evolution on the occurrence of close-in planets larger than Jupiter are not significant until stars have begun ascending substantially up the red giant branch (>~5-6 R_{sun}_).
Cone search capability for table J/AJ/158/227/table1 (Asteroseismic parameters)