In a unified regenerative fuel cell (URFC) or reversible fuel cell the oxygen bifunctional catalyst must switch reversibly between the oxygen reduction reaction (ORR), fuel cell mode, and the oxygen evolution reaction (OER), electrolyzer mode. However, it is often unclear what effect alternating between ORR and OER has on the electrochemical behavior and physiochemical properties of the catalyst. Herein, operando X-ray absorption spectroscopy (XAS) is utilized to monitor the continuous and dynamic evolution of the Co, Mn, and Fe oxidation states of perovskite catalysts Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and La0.4Sr0.6MnO3-δ (LSM), while the potential is oscillated between reducing and oxidizing potentials with cyclic voltammetry. The results reveal the importance of investigating bifunctional catalysts by alternating between fuel cell and electrolyzer operation and highlight the limitations and challenges of bifunctional catalysts. It is shown that the requirements for ORR and OER performance are divergent and that the oxidative potentials of OER are detrimental to ORR activity. These findings are used to give guidelines for future bifunctional catalyst design. Additionally, it is demonstrated how sunlight can be used to reactivate the ORR activity of LSM after rigorous cycling.