Seawater carbonate chemistry and gene expression (RT-PCR) and enzyme activity of the Antarctic coral Malacobelemnon daytoni


Benthic organisms of the Southern Ocean are particularly vulnerable to ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. OA most strongly affects animals with calcium carbonate skeletons or shells, such as corals and mollusks. We exposed the abundant cold-water coral Malacobelemnon daytoni from an Antarctic fjord to low pH seawater (LpH) (7.68 +/- 0.17) to test its physiological responses to OA, at the level of gene expression (RT-PCR) and enzyme activity. Corals were exposed in short- (3 days) and long-term (54 days) experiments to two pCO2 conditions (ambient and elevated pCO2 equaling RCP 8.5, IPCC 2019, approximately 372.53 and 956.78 μatm, respectively).Of the eleven genes studied through RT-PCR, six were significantly upregulated compared with control in the short-term in the LpH condition, including the antioxidant enzyme superoxide dismutase (SOD), Heat Shock Protein 70 (HSP70), Toll-like receptor (TLR), galaxin and ferritin. After long-term exposure to low pH conditions, RT-PCR analysis showed seven genes were upregulated. These include the mannose-binding C-Lectin and HSP90. Also, the expression of TLR and galaxin, among others, continued to be upregulated after long-term exposure to low pH. Expression of carbonic anhydrase (CA), a key enzyme involved in calcification, was also significantly upregulated after long-term exposure. Our results indicated that, after two months, M. daytoni is not acclimatized to this experimental LpH condition. Gene expression profiles revealed molecular impacts that were not evident at the enzyme activity level. Consequently, understanding the molecular mechanisms behind the physiological processes in the response of a coral to LpH is critical to understanding the ability of polar species to cope with future environmental changes. Approaches integrating molecular tools into Antarctic ecological and/or conservation research make an essential contribution given the current ongoing OA processes.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-10-05.

Related Identifier
Metadata Access
Creator Servetto, Natalia ORCID logo; de Aranzamendi, M C ORCID logo; Bettencourt, Raul ORCID logo; Held, Christoph ORCID logo; Abele, Doris ORCID logo; Movilla, Juancho ORCID logo; González, G ORCID logo; Bustos, D M (ORCID: 0000-0002-7637-328X); Sahade, Ricardo José ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2021
Rights Creative Commons Attribution 4.0 International;
OpenAccess true
Resource Type Dataset
Format text/tab-separated-values
Size 3461 data points
Discipline Earth System Research
Spatial Coverage (-58.667 LON, -62.233 LAT)