Designing optimal food safety monitoring schemes using Bayesian network and Integer programming: the case of dioxins and DL-PCBs monitoring

DOI

Bayesian Network was applied to estimate probability of contamination occurrence. Linear programming was used to optimize monitoring based on estimated probabilities.

Date Submitted: 2023-08-18

Identifier
DOI https://doi.org/10.17026/dans-29s-tmj7
Metadata Access https://phys-techsciences.datastations.nl/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.17026/dans-29s-tmj7
Provenance
Creator Z. Wang ORCID logo
Publisher DANS Data Station Phys-Tech Sciences
Contributor Data Librarian; H.J. van der Fels Klerx (Wageningen University & Research); A.G.J.M. Oude Lansink (Wageningen University & Research); Wageningen University & Research
Publication Year 2023
Rights CC BY 4.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/licenses/by/4.0
OpenAccess true
Contact Data Librarian (Wageningen UR)
Representation
Resource Type Dataset
Format type/x-r-syntax; application/vnd.openxmlformats-officedocument.spreadsheetml.sheet; application/zip; text/plain
Size 22357; 237247; 24342; 236175; 17481; 30381; 111871; 4055
Version 1.0
Discipline Agriculture, Forestry, Horticulture, Aquaculture; Agriculture, Forestry, Horticulture, Aquaculture and Veterinary Medicine; Chemistry; Food Safety; Life Sciences; Natural Sciences