Coral calcifying fluid chemistry at CO2 seeps

DOI

Coral reefs are iconic ecosystems with immense ecological, economic and cultural value, but globally their carbonate-based skeletal construction is threatened by ocean acidification (OA). Identifying coral species that have specialised mechanisms to maintain high rates of calcification in the face of declining seawater pH is of paramount importance in predicting future species composition, and growth of coral reefs. Here, we studied multiple coral species from two distinct volcanic CO2 seeps in Papua New Guinea to assess their capacity to control their calcifying fluid (CF) chemistry. Several coral species living under conditions of low mean seawater pH, but with either low or high variability in seawater pH, were examined and compared with those living in 'normal' (non-seep) ambient seawater pH. We show that when mean seawater pH is low but highly variable, corals have a greater ability to maintain constant pHcf in their CF, but this characteristic was not linked with changes in abundance. Within less variable low pH seawater, corals with limited reductions in pHcf at the seep sites compared with controls tended to be more abundant at the seep site than at the control site. However, this finding was strongly influenced by a single species (Montipora foliosa), which was able to maintain complete pHcf homeostasis. Overall, although our findings indicate that there might be an association between ecological success and greater pHcf homeostasis, further research with additional species and at more sites with differing seawater pH regimes is required to solidify inferences regarding coral ecological success under future OA.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-12-17.

Identifier
DOI https://doi.org/10.1594/PANGAEA.939651
Related Identifier IsSupplementTo https://doi.org/10.1111/gcb.16093
Related Identifier IsDocumentedBy https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.939651
Provenance
Creator Comeau, Steeve; Cornwall, Christopher Edward ORCID logo; Shlesinger, T ORCID logo; Hoogenboom, M O ORCID logo; Mana, R; McCulloch, Malcolm T ORCID logo; Rodolfo-Metalpa, Riccardo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2022
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 5196 data points
Discipline Earth System Research