Maximum likelihood estimation of a GARCH-stable model (replication data)

DOI

Maximum likelihood is used to estimate a generalized autoregressive conditional heteroskedastic (GARCH) process where the residuals have a conditional stable distribution (GARCH-stable). The scale parameter is modelled such that a GARCH process with normally distributed residuals is a special case. The usual methods of estimating the parameters of the stable distribution assume constant scale and will underestimate the characteristic exponent when the scale parameter follows a GARCH process. The parameters of the GARCH-stable model are estimated with daily foreign currency returns. Estimates of characteristic exponents are higher with the GARCH-stable than when independence is assumed. Monte Carlo hypothesis testing procedures, however, reject our GARCH-stable model at the 1% significance level in four out of five cases.

Identifier
DOI https://doi.org/10.15456/jae.2022313.1131459631
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:776463
Provenance
Creator Liu, Shi-Miin; Brorsen, B. Wade
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 1995
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics