Efficient O₂ reduction to H₂O₂, vital for energy conversion and environmental cleanup, relies on precise control of heterogeneous catalysts interacting with reaction species. Through high-throughput density functional theory calculations, consisting of 369 single atom catalysts, we identified the polarized descriptor (electric dipole strength) on two-dimensional carbon materials, revealing insights into the catalytic effect of support polarization. Surprisingly, this descriptor exhibits advanced scaling relationships towards H₂O₂ synthesis, incorporating factors such as active metals, coordination environments, and surface curvatures, highlighting its widespread significance. Furthermore, it demonstrates reliable predictability for O₂ adsorption in dynamic water environments, with optimal reactivity observed within the range of -1.40 to -1.00 e·Å, as confirmed by dynamic and static simulations of the 2e- pathway of O₂ reduction. In essence, these findings offer valuable insights for the rational design of electrocatalysts tailored for selective O₂ reduction.