Continued population growth increases the demand for space and resources, which in turn enhances anthropogenic pressure on coastal seas. Biotic and abiotic ecosystem understanding in a wider context is essential for effective management of stakeholder interests. This study is a synthesis of recent findings based on short-lived radium isotopes in the shelf ocean North Sea and uses the isotopes to quantify relevant sources and sinks in biogeochemical cycles in the coastal sea in order to enhance system understanding.We improve upon the previously designed box model for the southern North Sea by Burt et al. [2014], using a denser data coverage for nearshore areas. Specifically, the updated model considers decay-supported desorbable Ra from suspended particles and input from submarine groundwater discharge. The model quantified a total of five source terms for Ra: the Wadden Sea, rivers, desorption from suspended particles in the water column, submarine groundwater discharge from beach systems, and porewater exchange at North Sea bottom sediments; whereas considered losses are radioactive decay and mixing with the open North Sea. The mass balance reveals that porewater exchange, e.g., ripple flow, significantly dominates the total short-lived Ra isotope discharge to the southern North Sea. An eddy diffusion based Ra approach was not successful to quantify submarine groundwater discharge from beach systems, due to other major inputs of Ra isotopes from the adjacent Wadden Sea and river discharge, superimposing the minor submarine groundwater discharge from beaches.