This file contains all the data, as well as the code necessary to reproduce the exact diagonalization calculations in Phys. Rev. Lett. 133, 076502 (2024) in which the phenomenon of a non-Hermitian Mott skin effect is introduced theoretically. Skin effects are a key differentiating feature of (one-dimensional) non-Hermitian systems, and are characterized by the exponential accumulation of charge towards one side of the system in all its eigenstates. It appears in noninteracting systems. This work finds a novel analogous effect which is specific to interacting quantum particles, where the particle density is constant, but a flavour/spin degree of freedom shows the exponential localization. This is demonstrated with exact diagonalization calculations of the non-Hermitian many-body Hamiltonian as well as the time-evolution of the Lindbladian.