Heat transfer data of two-phase flow in a horizontal tube filled with metal sponge

DOI

In der hier vorgestellten Publikation werden experimentelle Daten zum Wärmeübergangs-koeffizienten beim gesättigten Strömungssieden von CO$_2$ in einem horizontalen zylindrischen Rohr (Durchmesser 14 mm) mit integrierten Metallschwämmen (offenzellige Metallschäume) präsentiert. Die nominelle Zelldichte der Schwämme betrug 10 ppi („Poren pro Zoll“) bzw. 20 ppi. Der Massenstrom wurde von 25 kg m$^{-2}$ s$^{-1}$ bis 125 kg m$^{-2}$ s$^{-1}$ variiert, der Strömungsdampfgehalt lag zwischen 10% und 100%. Der Sättigungsdruck betrug entweder 12 bar, 19 bar oder 26,5 bar. Die mit Schwämmen gefüllte Länge stromaufwärts der beheizten Zone betrug 38 mm beim 10 ppi Schwamm und entweder 35 mm oder 135 mm beim 20 ppi Schwamm. Für die 20 ppi Probe wurde der Anteil des mit Schwamm gefüllten Testabschnitts variiert, um Einlaufeffekte zu untersuchen. Als Referenz wurde der Wärmeübergangskoeffizient während des Strömungssiedens im leeren Rohr bestimmt. Darüber hinaus wurden die für den Wärme-übergangskoeffizient relevanten geometrische Eigenschaften der Schwämme (Fensterdurchmesser, Stegdurchmesser, Porosität, spezifische Oberfläche und Wärmeleitfähigkeit) ermittelt.

Experimental data on the heat transfer coefficient during saturated flow boiling of CO$_2$ in a horizontal cylindrical tube (diameter 14 mm) with integrated metal sponges (open-cell metal foams) are presented in this publication. The nominal cell density of the sponges was 10 ppi (“pores per inch”) or 20 ppi. The mass flux varied from 25 kg m$^{-2}$ s$^{-1}$ to 125 kg m$^{-2}$ $\,^{-1}$ and the vapor quality from 10% to 100%. The saturation pressure was either 12 bar, 19 bar or 26.5 bar. The length filled with sponge upstream of the heated part of the test section was 38 mm for the 10 ppi sponge and either 35 mm or 135 mm for the 20 ppi sponge. For the 20 ppi sample, the proportion of the test section filled with sponge was varied to investigate entrance effects. As a reference, the heat transfer coefficient during flow boiling in the empty tube was determined. In addition, geometric properties of the sponges relevant for the heat transfer coefficient (window diameter, strut diameter, porosity, specific surface area, and heat conductivity), were identified.

Sponges

10 ppi copper sponge made by replication technique

  • total porosity: 91%
  • open porosity: between 85% and 88%
  • nominal cell density: approximately 10 pores per inch
  • mean strut diameter: 0.45 mm
  • mean window diameter: 1.6 mm

10 ppi plastic sponge made by 3D printing * total and open porosity: 86% * nominal cell density: approximately 10 pores per inch * mean strut diameter: 0.6 mm * mean window diameter: 2.0 mm

20 ppi copper sponge made by replication technique * total porosity: 90% * open porosity: between 84% and 87% * nominal cell size: approximately 20 pores per inch * mean strut diameter: 0.28 mm * mean window diameter: 1.0 mm

Operating conditions

two-phase flow boiling in test section filled with sponges * pressure: 12 bar, 19 bar and 26.5 bar * mass flux: 25 kg m-2 s-1 to 125 kg m-2 s-1 * vapor quality: 10% to 100% * heat flux: 3 kW m-2 to 65 kW m-2 * boundary condition: * constant wall temperature * constant wall heat flux

two-phase flow boiling in empty tube * pressure: 12 bar and 26.5 bar * mass flux: 25 kg kg m-2 s-1 to 150 kg m-2 s-1 * vapor quality: 10% to 100% * heat flux: 1 kW m-2 to 40 kW m-2 * boundary condition: * constant wall temperature * constant wall heat flux

Identifier
DOI https://doi.org/10.35097/1181
Metadata Access https://www.radar-service.eu/oai/OAIHandler?verb=GetRecord&metadataPrefix=datacite&identifier=10.35097/1181
Provenance
Creator Weise, Sonja
Publisher Karlsruhe Institute of Technology
Contributor RADAR
Publication Year 2023
Rights Open Access; Creative Commons Attribution Non Commercial 4.0 International; info:eu-repo/semantics/openAccess; https://creativecommons.org/licenses/by-nc/4.0/legalcode
OpenAccess true
Representation
Resource Type Dataset
Format application/x-tar
Discipline Construction Engineering and Architecture; Engineering; Engineering Sciences