Geographical variation in shell morphology of juvenile snails (Concholepas concholepas) along the physical-chemical gradient of the Chilean coast

DOI

Changes in phenotypic traits, such as mollusc shells, are indicative of variations in selective pressure along environmental gradients. Recently, increased sea surface temperature (SST) and ocean acidification (OA) due to increased levels of carbon dioxide in the seawater have been described as selective agents that may affect the biological processes underlying shell formation in calcifying marine organisms. The benthic snail Concholepas concholepas (Muricidae) is widely distributed along the Chilean coast, and so is naturally exposed to a strong physical-chemical latitudinal gradient. In this study, based on elliptical Fourier analysis, we assess changes in shell morphology (outlines analysis) in juvenile C. concholepas collected at northern (23°S), central (33°S) and southern (39°S) locations off the Chilean coast. Shell morphology of individuals collected in northern and central regions correspond to extreme morphotypes, which is in agreement with both the observed regional differences in the shell apex outlines, the high reclassification success of individuals (discriminant function analysis) collected in these regions, and the scaling relationship in shell weight variability among regions. However, these extreme morphotypes showed similar patterns of mineralization of calcium carbonate forms (calcite and aragonite). Geographical variability in shell shape of C. concholepas described by discriminant functions was partially explained by environmental variables (pCO2, SST). This suggests the influence of corrosive waters, such as upwelling and freshwaters penetrating into the coastal ocean, upon spatial variation in shell morphology. Changes in the proportion of calcium carbonate forms precipitated by C. concholepas across their shells and its susceptibility to corrosive coastal waters are discussed.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-09-10.

Supplement to: Ramajo, L; Baltanás, Ángel; Torres, Rodrigo; Manríquez, Patricio H; Rodriguez-Navarro, Alejandro; Lagos, Nelson A (2013): Geographical variation in shell morphology of juvenile snails (Concholepas concholepas) along the physical–chemical gradient of the Chilean coast. Journal of the Marine Biological Association of the United Kingdom, 93(08), 2167-2176

Identifier
DOI https://doi.org/10.1594/PANGAEA.835629
Related Identifier https://doi.org/10.1017/S0025315413000891
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.835629
Provenance
Creator Ramajo, L (ORCID: 0000-0001-6707-685X); Baltanás, Ángel; Torres, Rodrigo ORCID logo; Manríquez, Patricio H (ORCID: 0000-0001-6586-764X); Rodriguez-Navarro, Alejandro ORCID logo; Lagos, Nelson A
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2013
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 5424 data points
Discipline Earth System Research