Reverberation mapping & opt. spectra data of AGNs

DOI

The radius-luminosity (R_H{beta}-L_5100) relationship of active galactic nuclei (AGNs) established by the reverberation mapping (RM) observations has been widely used as a single-epoch black hole mass estimator in the research of large AGN samples. However, the recent RM campaigns discovered that the AGNs with high-accretion rates show shorter time lags by factors of a few comparing with the predictions from the R_H{beta}-L_5100 relationship. The explanation of the shortened time lags has not been finalized yet. We collect eight different single-epoch spectral properties to investigate how the shortening of the time lags correlates with those properties and to determine the origin of the shortened lags. We find that the flux ratio between FeII and H{beta} emission lines shows the most prominent correlation, thus confirming that accretion rate is the main driver for the shortened lags. In addition, we establish a new scaling relation including the relative strength of FeII emission. This new scaling relation can provide less biased estimates of the black hole mass and accretion rate from the single-epoch spectra of AGNs.

Cone search capability for table J/ApJ/886/42/table1 (Reverberation mapped AGNs and their results)

Identifier
DOI http://doi.org/10.26093/cds/vizier.18860042
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/ApJ/886/42
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/886/42
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/886/42
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/ApJ/886/42
Provenance
Creator Du P.; Wang J.-M.
Publisher CDS
Publication Year 2021
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Galactic and extragalactic Astronomy; High Energy Astrophysics; Interdisciplinary Astronomy; Natural Sciences; Observational Astronomy; Physics; Stellar Astronomy