The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6M_{sun}. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and {alpha} Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ~2Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0M{sun}_stars.