Replication Data for: "ParSetgnostics: Quality Metrics for Parallel Sets"

DOI

This is the replication data for our research article "ParSetgnostics: Quality Metrics for Parallel Sets." It contains the datasets used to obtain optimized Parallel Sets visualizations. We used the following six datasets for our experiments, which we describe on a per-file basis. All datasets are purely categorical datasets.

Identifier
DOI https://doi.org/10.18419/darus-2869
Related Identifier IsCitedBy https://doi.org/10.1111/cgf.14314
Metadata Access https://darus.uni-stuttgart.de/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.18419/darus-2869
Provenance
Creator Dennig, Frederik L. ORCID logo; Fischer, Maximilian T. ORCID logo; Blumenschein, Michael ORCID logo; Fuchs, Johannes ORCID logo; Keim, Daniel ORCID logo; Dimara, Evanthia ORCID logo
Publisher DaRUS
Contributor Dennig, Frederik L.; Keim, Daniel
Publication Year 2022
Funding Reference DFG 251654672
Rights CC BY 4.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/licenses/by/4.0
OpenAccess true
Contact Dennig, Frederik L. (Universität Konstanz); Keim, Daniel (Universität Konstanz)
Representation
Resource Type Categorical data; Dataset
Format text/tab-separated-values
Size 83070; 34150; 45176; 24328; 23663; 16051
Version 1.1
Discipline Computer Science; Computer Science, Electrical and System Engineering; Design; Engineering Sciences; Fine Arts, Music, Theatre and Media Studies; Humanities