MULTIVARIATE METHODS FOR MONITORING STRUCTURAL CHANGE (replication data)

DOI

Detection of structural change is a critical empirical activity, but continuous monitoring for changes in real time raises well-known econometric issues that have been explored in a single series context. If multiple series co-break then it is possible that simultaneous examination of a set of series helps identify changes with higher probability or more rapidly than when series are examined on a case-by-case basis. Some asymptotic theory is developed for maximum and average CUSUM detection tests. Monte Carlo experiments suggest that these both provide an improvement in detection relative to a univariate detector over a wide range of experimental parameters, given a sufficiently large number of co-breaking series. This is robust to a cross-sectional correlation in the errors (a factor structure) and heterogeneity in the break dates. We apply the test to a panel of UK price indices.

Identifier
DOI https://doi.org/10.15456/jae.2022320.0731302606
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:775734
Provenance
Creator Groen, Jan; Kapetanios, George; Price, Simon
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 2013
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics; Social and Behavioural Sciences