Nonempirical hybrid functionals for band gaps of inorganic metal-halide perovskites

Nonempirical hybrid functionals are investigated for band-gap predictions of inorganic metal-halide perovskites belonging to the class CsBX3 , with B = Ge, Sn, Pb and X = Cl, Br, I. We consider both global and range-separated hybrid functionals and determine the parameters through two different schemes. The first scheme is based on the static screening response of the material and thus yields dielectric-dependent hybrid functionals. The second scheme defines the hybrid functionals through the enforcement of Koopmans’ condition for localized defect states. We also carry out quasiparticle self-consistent GW calculations with vertex corrections to establish state-of-the-art references. For the investigated class of materials, dielectric-dependent functionals and those fulfilling Koopmans’ condition yield band gaps of comparable accuracy (∼0.2 eV), but the former only require calculations for the primitive unit cell and are less subject to the specifics of the material.

Identifier
Source https://archive.materialscloud.org/record/2020.0003/v1
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:294
Provenance
Creator Bischoff, Thomas; Wiktor, Julia; Chen, Wei; Pasquarello, Alfredo
Publisher Materials Cloud
Publication Year 2020
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering