Flood-stack of combined sediment record ELSA

DOI

This study reconstructs the main flood phases in central Europe from event layers in sediment cores from Holocene Eifel maar lakes and Pleistocene dry maar structures. These reconstructions are combined with recent gauge time-series to cover the entire precipitation extremes of the last 60 000 years. In general, Eifel maar sediments are perfectly suited for the preservation of event layers since the deep water in the maar lakes is seasonal anoxic and therefore, bioturbation is low. However, the preservation of annual lamination is only preserved in Holzmaar and Ulmener Maar; the other cores are dated by 14C, magnetostratigraphy, tephra markers and ice core tuning. The cores were drilled in the Eifel region of central western Germany, which represents a climatic homogenous region from Belgium to Poland and all across Central Europe.A total of 233 flood layers over 7.5 mm were detected in all analysed cores. The stratigraphic classification of the flood events follows the newly defined Landscape Evolution Zones (LEZ). The strongest events in the Holocene have occurred during LEZ 1 (0?6000 b2k) in the years 658, 2800 and 4100 b2k. Flood layers in the LEZ 2 (6000-10 500 b2k) are not as frequent as during the LEZ 1, nevertheless, the floods cluster between 6000 and 6500 b2k. Twenty flood layers are found in the LEZ 3 (10 500?14 700 b2k); 11 in LEZ 4 (14 700-21 000 b2k); 15 in LEZ 5 (21 000-28 500 b2k); 34 in LEZ 6 (28 500?36 500 b2k); 8 in LEZ 7 (36 500-49 000 b2k); zero in LEZ 8 (49 000-55 000 b2k) and LEZ 9 (55 000-60 000 b2k). The maximum flood phases during the Pleistocene are at 11 500-17 500 (late glacial and Younger Dryas), 23 000-24 000 (before Greenland Interstadial (GI) 2), 29 000-35 000 (especially between GI 5 and 4) and 44 000-44 500 b2k (transition from GI 12 to 11).The variations in flood dynamics are climatically driven and mainly associated with climate transitions and colder periods, combined with light vegetation. It turns out that low vegetation coverage related to both Greenland Stadial phases and anthropogenic impacts since late Holocene is the main cause for the development of flood layers in maar sediments. The precipitation itself, plays only a secondary role. This interpretation is based on the current climate understanding of cold phases and several studies of fluvial erosion related to vegetation coverage.

Sediment core combination: AU2 (Aueler Maar Lat.: 50.28383, Long.: 6.59574. elevation: 453, recovery: 123 m, Gauß-Krüger coordinate system: 2542455/5572017) + HM1 (Holzmaar Lat.: 50.1203, Long.: 6.87963, elevation: 425, recovery: 10 m, Gauß-Krüger coordinate system: 2562900/5554030)

Supplement to: Brunck, Heiko; Sirocko, Frank; Albert, Johannes (2016): The ELSA-Flood-Stack: A reconstruction from the laminated sediments of Eifel maar structures during the last 60000 years. Global and Planetary Change, 142, 136-146

Identifier
DOI https://doi.org/10.1594/PANGAEA.868668
Related Identifier https://doi.org/10.1016/j.gloplacha.2015.12.003
Related Identifier https://doi.org/10.1016/j.gloplacha.2015.07.012
Related Identifier https://doi.org/10.1016/j.gloplacha.2016.03.011
Related Identifier https://doi.org/10.1016/j.gloplacha.2016.03.005
Related Identifier https://elsa-project.de/
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.868668
Provenance
Creator Brunck, Heiko; Sirocko, Frank; Albert, Johannes ORCID logo
Publisher PANGAEA
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 240 data points
Discipline Earth System Research
Spatial Coverage (6.830 LON, 50.160 LAT)