Modelled non-stationary kilometer-scale hourly precipitation extremes of a 100-year event under 2 GWL scenarios for Germany

DOI

Given the importance of sub-daily extreme precipitation events for the occurrence of pluvial floods, it is a key component in climate change adaptation to quantify the likelihood of such extreme events under current and future climate conditions. Such assessments are usually limited by a lack of sufficiently dense and sub-daily precipitation observations, (ii) high-resolution convection-permitting regional climate model (CPM) simulations that realistically represent sub-daily precipitation extremes, and (iii) statistical methods that allow us to extrapolate extreme precipitation return levels under limited data availability and non-stationary conditions (i.e., climate change) based on the main governing physical processes. We overcome these constraints through the utilization of kilometer-scale hourly radar precipitation estimates (RADKLIM) and spatially disaggregated observed daily temperature data (HYRAS-DE-TAS), and the implementation of a novel CPM ensemble covering the entirety of Germany, obtained from the NUKLEUS project within the BMBF-funded RegIKlim (Regionale Information zum Klimahandeln) initiative. Additionally, we introduce the Temperature-dependent Non-Asymptotic statistical model for eXtreme return levels (TENAX) model, a new approach that integrates daily temperature as a covariate, aligning with observed Clausius-Clapeyron scaling rates. This innovation results in a groundbreaking dataset of hourly extreme precipitation for Germany, marking the first instance of accounting for non-stationary climate conditions, i.e., in a +2K and +3K warmer world. The new dataset contains kilometer-scale hourly precipitation extremes for the return level of a 100-year event. Due to the inherent biases of radar-based estimates compared to ground observations, the precipitation extremes have been bias-adjusted on return level basis using KOSTRA.

Identifier
DOI https://doi.org/10.26050/WDCC/PrecExtr100yr
Metadata Access https://dmoai.cloud.dkrz.de/oai/provider?verb=GetRecord&metadataPrefix=iso19115&identifier=oai:wdcc.dkrz.de:iso_5275119
Provenance
Creator Dr. Patrick Laux
Publisher World Data Center for Climate (WDCC)
Publication Year 2024
Funding Reference info:eu-repo/grantAgreement/BMBF//01LR2006D/DE//RegIKLIM - KARE (Regional Information on Climate Action)
Rights CC BY 4.0: Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Contact not filled
Representation
Language English
Resource Type collection ; collection
Format NetCDF
Size 6 MB
Version 1
Discipline Earth System Research
Spatial Coverage (5.500W, 47.000S, 15.500E, 55.000N)