2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma

DOI

These are the results from the analyses presented in a paper submitted to Scientific Reports.

The zip file contains the trained model files and the plots that were used in the manuscript.

Code for reproduction of our analyses can be obtained from https://github.com/oncoray/cnn-hnscc. There, you also find instructions on how to load our models.

Identifier
DOI https://doi.org/10.14278/rodare.255
Related Identifier https://www.hzdr.de/publications/Publ-30759
Related Identifier https://www.hzdr.de/publications/Publ-30750
Related Identifier https://doi.org/10.14278/rodare.254
Related Identifier https://rodare.hzdr.de/communities/health
Related Identifier https://rodare.hzdr.de/communities/rodare
Metadata Access https://rodare.hzdr.de/oai2d?verb=GetRecord&metadataPrefix=oai_datacite&identifier=oai:rodare.hzdr.de:255
Provenance
Creator Starke, Sebastian; Leger, Stefan; Zwanenburg, Alex; Leger, Karoline; Lohaus, Fabian; Linge, Annett; Schreiber, Andreas; Kalinauskaite, Goda; Tinhofer, Inge; Guberina, Nika; Guberina, Maja; Balermpas, Panagiotis; Grün, Jens von der; Ganswindt, Ute; Belka, Claus; Peeken, Jan C.; Combs, Stephanie E.; Böke, Simon; Zips, Daniel; Richter, Christian ORCID logo; Troost, Esther Gera Cornelia ORCID logo; Krause, Mechthild ORCID logo; Baumann, Michael; Löck, Steffen
Publisher Rodare
Publication Year 2020
Rights Creative Commons Attribution Non Commercial 4.0 International; Open Access; https://creativecommons.org/licenses/by-nc/4.0/legalcode; info:eu-repo/semantics/openAccess
OpenAccess true
Contact https://rodare.hzdr.de/support
Representation
Resource Type Dataset
Discipline Life Sciences; Natural Sciences; Engineering Sciences