Adversarial validation for quantifying dissimilarity in geospatial machine learning prediction

DOI

This data includes all datasets and codes for adversarial validation in geospatial machine learning prediction and corresponding experiments. Except for datasets (Brazil Amazon basion AGB dataset and synthetic species abundance dataset) and code, Reademe.txt explains each file's meaning.

Identifier
DOI https://doi.org/10.17026/PT/OPPCTP
Metadata Access https://phys-techsciences.datastations.nl/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.17026/PT/OPPCTP
Provenance
Creator Wang, Yanwen. ORCID logo
Publisher DANS Data Station Physical and Technical Sciences
Contributor Wang, Yanwen.; Mahdi Khodadadzadeh; Raul Zurita-Milla
Publication Year 2024
Funding Reference China Scholarship Council 201804910723
Rights CC0 1.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/publicdomain/zero/1.0
OpenAccess true
Contact Wang, Yanwen. (University of Twente)
Representation
Resource Type Dataset
Format application/x-rar-compressed; application/vnd.openxmlformats-officedocument.wordprocessingml.document; text/plain
Size 505156777; 428448; 6305; 657508458
Version 2.0
Discipline Earth and Environmental Science; Environmental Research; Geosciences; Natural Sciences