Dual RNA-seq of symbiont and host during establishment of coral-algal symbiosis

Background: The molecular machinery underpinning the establishment of this relationship is not well understood. This is especially true of the symbiont side, as previous attempts to understand the interaction between coral larvae and Symbiodiniaceae have focused nearly exclusively on the host Results: In the current study, we utilised dual RNA-seq approach to study both symbiont and coral transcriptomes during symbiosis establishment. The transcriptomic response of C. goreaui to the symbiotic state was complex, the most obvious feature of which was extensive and generalized downregulation of gene expression. Included in this “symbiosis-derived transcriptional repression” were a range of stress response and immune-related genes. In contrast, a range of genes implicated in metabolism were upregulated in the symbiotic state. Consistent with previous ecological studies, this transcriptomic response of C. goreaui suggests that active translocation of metabolites to the host may begin early in the colonization process, and thus that the mutualistic relationship is established at the larval stage. The coral data imply the involvement of some SCRiP family members in the colonisation process and support the hypothesis that immune-suppression and arrest of phagosome maturation play important roles during the establishment of compatible symbioses. Conclusions: This study provides novel insights into the transcriptomic remodelling that occurs in C. goreaui during transition to a symbiotic lifestyle, with important implications for understanding the establishment of symbiosis between corals and their dinoflagellate partners. Overall design: mRNA profiles from colonised larvae after 3, 12, 48, and 72 h were generated by deep sequencing, in triplicate, using Illumina HiSeq platform

Identifier
Source https://data.blue-cloud.org/search-details?step=~012BF3516994CDC1092AAAD9D988E094033CDAC2076
Metadata Access https://data.blue-cloud.org/api/collections/BF3516994CDC1092AAAD9D988E094033CDAC2076
Provenance
Instrument Illumina HiSeq 2000; ILLUMINA
Publisher Blue-Cloud Data Discovery & Access service; ELIXIR-ENA
Publication Year 2024
OpenAccess true
Contact blue-cloud-support(at)maris.nl
Representation
Discipline Marine Science
Temporal Point 2020-08-14T00:00:00Z