Spotting the Danger Zone: Forecasting Financial Crises With Classification Tree Ensembles and Many Predictors (replication data)

DOI

This paper introduces classification tree ensembles (CTEs) to the banking crisis forecasting literature. I show that CTEs substantially improve out-of-sample forecasting performance over best-practice early-warning systems. CTEs enable policymakers to correctly forecast 80% of crises with a 20% probability of incorrectly forecasting a crisis. These findings are based on a long-run sample (1870-2011), and two broad post-1970 samples which together cover almost all known systemic banking crises. I show that the marked improvement in forecasting performance results from the combination of many classification trees into an ensemble, and the use of many predictors.

Identifier
DOI https://doi.org/10.15456/jae.2022326.0702657952
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:775472
Provenance
Creator Ward, Felix
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 2017
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics; Social and Behavioural Sciences