Seawater carbonate chemistry and seasonal net calcification by secondary calcifiers in coral reefs of the Eastern Tropical Pacific Ocean

DOI

This study assesses whether secondary calcification is driven by a contrasting seasonal pattern (rainy vs dry) that occurs in the Eastern Tropical Pacific (ETP). Secondary calcifiers net calcification rates and coverage were measured in two reefs: the semi-enclosed Bahía Tiburón reef (BT [21°52′30 “N, 105°54/54 “W]) and the open Las Monas fringing reef (LM [21°51ʹ00ʹʹN, 105°52ʹ45ʹʹW]). Measurements were made from 2013 to 2016 using Calcification Accretion Units (CAUs). Seawater temperature, illuminance, pCO2, pH, ΩCa, and ΩAr were also measured. Low means of pCO2, and high means of ΩCa and ΩAr, were measured during the rainy season. At Las Monas, the composition of the calcifier community differed between seasons. A seasonal effect on net calcification was recorded in the semi-enclosed reef and in the exposed microhabitat of both reefs. Overall, net calcification (mean ± SD) was 1.17 ± 1.13 g·CaCO3·m−2·day−1. Calcification in the open fringing reef (1.51 ± 1.32 g·CaCO3·m−2·day−1) was almost double that in the semi-enclosed reef (0.83 ± 0.78 g·CaCO3·m−2·day−1). Calcification also decreased dramatically between 2014 (1.57 g·CaCO3·m−2·day−1) and 2016 (0.99 g·CaCO3·m−2·day−1). The ENSO event of 2015 raised the water temperature almost 1 °C above the decadal average, which led to a mass coral bleaching in both reefs. That thermal stress might explain the calcification decline in 2015–2016, but probably also obscured a clearer seasonal pattern in net calcification. This study is the first to show that anomalous and persistent high seawater temperatures can affect carbonate production by secondary calcifiers.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2022) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-06-26.

Identifier
DOI https://doi.org/10.1594/PANGAEA.960042
Related Identifier IsSupplementTo https://doi.org/10.1007/s00227-022-04158-0
Related Identifier IsDocumentedBy https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.960042
Provenance
Creator Orrante‑Alcaraz, Jessica M ORCID logo; Carballo, José Luis; Yáñez, Benjamín ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2023
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 18504 data points
Discipline Earth System Research
Spatial Coverage (-105.915W, 21.850S, -105.879E, 21.875N)