16-year WRF simulation for the Southern Alps of New Zealand

DOI

The climatological dataset was produced using the Weather and Research Forecasting (WRF) model, version 4.2.2, configured with two nested domains at 10 km (D1) and 2 km (D2) horizontal grid spacing. It covers most of the South Island of New Zealand and is centered over Brewster Glacier in the Southern Alps. The model was forced every three hours by ERA5 reanalysis data at its outer lateral boundaries. The dataset spans the period of 1 January 2005 to 31 December 2020, providing daily output in the outer domain (D1) and 3-hourly output in the innermost domain (D2).

                The data provided here are a selection of daily averages from the inner WRF domain (D2; 2-km grid spacing). They are distributed among three different file types containing 4-dimensional, 3-dimensional and time-invariant output variables, respectively. For the 4-dimensional fields, perturbation and base-state atmospheric pressure (WRF variables P and PB) and geopotential (PH and PHB) were combined to produce full model fields (PRES and GEOPT). Perturbation potential temperature (T) was converted to total potential temperature (THETA). Wind vectors (U,V, and W) were converted to mass points and rotated to earth coordinates.

                -------
                Acknowledgements: The modeling and related research was supported by the German Research Foundation (DFG) grant no. 453305163. The authors gratefully acknowledge the scientific support and HPC resources provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under the NHR project b128dc / ATMOS ("Numerical atmospheric modeling for the attribution of climate change and for model improvement"). NHR funding is provided by federal and Bavarian state authorities. NHR@FAU hardware is partially funded by the German Research Foundation (DFG) – 440719683.
Identifier
DOI https://doi.org/10.26050/WDCC/NZ-PROXY_16yrWRF
Metadata Access https://dmoai.cloud.dkrz.de/oai/provider?verb=GetRecord&metadataPrefix=iso19115&identifier=oai:wdcc.dkrz.de:iso_5165959
Provenance
Creator Elena Kropac; Prof. Dr. Thomas Mölg; Prof. Dr. Nicolas James Cullen
Publisher World Data Center for Climate (WDCC)
Publication Year 2023
Funding Reference info:eu-repo/grantAgreement/DFG//453305163/DE//Exploring the potential of coralline algae as climate proxy and for climate model evaluation: a Southern Hemisphere case study of New Zealand info:eu-repo/grantAgreement/DFG//440719683/DE//High Performance Compute Cluster
Rights CC BY 4.0: Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Contact not filled
Representation
Language English
Resource Type collection ; collection
Format NetCDF
Size 468252 MB
Version 1
Discipline Atmospheric Sciences; Climatology; Geosciences; Natural Sciences
Spatial Coverage (164.722W, -47.615S, 173.880E, -41.344N)
Temporal Coverage Begin 2005-01-01T00:00:00Z
Temporal Coverage End 2020-12-31T00:00:00Z