This bachelor thesis studies the feasibility of grazing-incidence small-angle x-ray scattering
(GISAXS) in the UHI laser-target interaction via computational simulations with SMILEI. In
this work we briefly analyze the front and back of the target. We find predominantly that the
compression of the target becomes apparent in the GISAXS pattern, while we can not observe
ablation. We will mainly focus on the density oscillation, a dynamic that has not been mentio-
ned in literature yet. The density oscillation dynamics depend on a simple pressure gradient
in between the layers. We observe the multi layers inversely oscillating in density and a global
density alteration moving through the target. The density alteration allows to recognize the
dynamic in a GISAXS pattern. We learn, that GISAXS is feasible in the high intensity regime,
but not for the same dynamics as in the lower intensity regime.