South Pole Telescope 87-Square Degree Survey Millimeter Source Catalog

This table contains the results of an 87 deg<sup>2</sup> point-source survey centered at RA = 5<sup>h</sup>30<sup>m</sup>, Dec = -55<sup>o</sup> (J2000.0) taken with the South Pole Telescope at 1.4 and 2.0 mm wavelengths with arcminute resolution and milli-Jansky (mJy) depth. Based on the ratio of flux in the two bands, the authors separate the detected sources into two populations, one consistent with synchrotron emission from active galactic nuclei (AGN) and the other consistent with thermal emission from dust. In the reference paper, the authors present source counts for each population from 11 to 640 mJy at 1.4 mm and from 4.4 to 800 mJy at 2.0 mm. The 2.0-mm counts are dominated by synchrotron-dominated sources across the reported flux range; the 1.4-mm counts are dominated by synchrotron-dominated sources above ~15 mJy and by dust-dominated sources below that flux level. The authors detect 141 synchrotron-dominated sources and 47 dust-dominated sources at signal-to-noise ratio S/N > 4.5 in at least one band. All of the most significantly detected members of the synchrotron-dominated population are associated with sources in previously published radio catalogs. Some of the dust-dominated sources are associated with nearby (z << 1) galaxies whose dust emission is also detected by the Infrared Astronomy Satellite (IRAS). However, most of the bright, dust-dominated sources have no counterparts in any existing catalogs. The authors argue that these sources represent the rarest and brightest members of the population commonly referred to as sub-millimeter galaxies (SMGs). During the 2008 observing season, the 960-element South Pole Telescope (SPT) camera included detectors sensitive to radiation within bands centered at approximately 1.4 mm, 2.0 mm, and 3.2 mm (220 GHz, 150 GHz, and 95 GHz). Result in this reference paper are based on 607 hr of observing time, using only the 1.4-mm and 2.0-mm data from the 87 deg<sup>2</sup> portion of the field that was mapped with near-uniform coverage. Main-lobe beams were measured using the brightest sources in the field and were adequately fit by two-dimensional Gaussians with FWHM equal to 1.05 and 1.15 arcminutes at 1.4 mm and 2.0 mm, respectively. The typical rms of the filtered 2.0-mm and 1.4-mm maps used for source candidate identification (shown in Figures 1 and 2, respectively, of the reference paper) is 1.3 mJy at 2.0 mm and 3.4 mJy at 1.4 mm. Detections in both bands are listed in the final catalog as a single source if they are offset <30 arcseconds between the two bands. For sources detected in both bands, the authors adopt the position of the more significant detection. The argue that they are far enough above the confusion limit that this simple and intuitive method is adequate. For sources detected in only one band, the authors use the flux in the cleaned map for the second band at the position of the detection. This table lists all 3,496 sources above 3 sigma in either map. This table was created by the HEASARC in October 2017 based on an electronic version of Table 5 from the reference paper which was obtained from the CDS as their catalog J/ApJ/719/763 file table5.dat. This is a service provided by NASA HEASARC .

Identifier
Source https://dc.g-vo.org/rr/q/lp/custom/nasa.heasarc/sptmm87sd
Related Identifier https://heasarc.gsfc.nasa.gov/W3Browse/all/sptmm87sd.html
Related Identifier https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3query.pl?tablehead=name=heasarc_sptmm87sd&Action=More+Options&Action=Parameter+Search&ConeAdd=1
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://nasa.heasarc/sptmm87sd
Provenance
Creator Vieira et al.
Publisher NASA/GSFC HEASARC
Publication Year 2024
OpenAccess true
Contact NASA/GSFC HEASARC help desk <heasarc-vo at athena.gsfc.nasa.gov>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Natural Sciences; Observational Astronomy; Physics