Seawater carbonate chemistry and calcification during experiments with corals, 2003

DOI

Biogenic calcification is influenced by the concentration of available carbonate ions. The recent confirmation of this for hermatypic corals has raised concern over the future of coral reefs because [CO3] is a decreasing function of increasing pCO2 in the atmosphere. As one of the overriding features of coral reefs is their diversity, understanding the degree of variability between species in their ability to cope with a change in [CO3] is a priority. We cultured four phylogenetically and physiologically different species of hermatypic coral (Acropora verweyi, Galaxea fascicularis, Pavona cactus and Turbinaria reniformis) under 'normal' (280 µmol/kg) and 'low' (140 µmol/kg) carbonate-ion concentrations. The effect on skeletogenesis was investigated quantitatively (by calcification rate) and qualitatively (by microstructural appearance of growing crystalline fibres using scanning electron microscopy (SEM)). The 'low carbonate' treatment resulted in a significant suppression of calcification rate and a tendency for weaker crystallization at the distal tips of fibres. However, while the calcification rate was affected uniformly across species (13-18% reduction), the magnitude of the microstructural response was highly species specific: crystallization was most markedly affected in A. verweyi and least in T. reniformis. These results are discussed in relation to past records and future predictions of carbonate variability in the oceans.

Supplement to: Marubini, Francesca; Ferrier-Pagès, Christine; Cuif, Jean-Pierre (2003): Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proceedings of the Royal Society B-Biological Sciences, 270(1511), 179-184

Identifier
DOI https://doi.org/10.1594/PANGAEA.819631
Related Identifier IsSupplementTo https://doi.org/10.1098/rspb.2002.2212
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.819631
Provenance
Creator Marubini, Francesca; Ferrier-Pagès, Christine ORCID logo; Cuif, Jean-Pierre
Publisher PANGAEA
Publication Year 2003
Funding Reference Seventh Framework Programme https://doi.org/10.13039/100011102 Crossref Funder ID 211384 https://cordis.europa.eu/project/id/211384 European Project on Ocean Acidification; Sixth Framework Programme https://doi.org/10.13039/100011103 Crossref Funder ID 511106 https://cordis.europa.eu/project/id/511106 European network of excellence for Ocean Ecosystems Analysis
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Publication Series of Datasets; Collection
Format application/zip
Size 2 datasets
Discipline Earth System Research