Impact of ocean acidification on antimicrobial activity in gills of the blue mussel (Mytilus edulis)

DOI

Here, we aimed to investigate potential effects of ocean acidification on antimicrobial peptide (AMP) activity in the gills of Mytilus edulis, as gills are directly facing seawater and the changing pH (predicted to be reduced from 8.1 to 7.7 by 2100). The AMP activity of gill and haemocyte extracts was compared at pH 6.0, 7.7 and 8.1, with a radial diffusion assay against Escherichia coli. The activity of the gill extracts was not affected by pH, while it was significantly reduced with increasing pH in the haemocyte extracts. Gill extracts were also tested against different species of Vibrio (V. parahaemolyticus Vibrio tubiashii, V. splendidus and V. alginoyticus) at pH 7.7 and 8.1. The metabolic activity of the bacteria decreased by 65-90%, depending on species of bacteria, but was, as in the radial diffusion assay, not affected by pH. The results indicated that AMPs from gills are efficient in a broad pH-range. However, when mussels were pre-exposed for pH 7.7 for four month the gill extracts presented significantly lower inhibit of bacterial growth. A full in-depth proteome investigation of gill extracts, using LC-Orbitrap MS/MS technique, showed that among previously described AMPs from haemocytes of Mytilus, myticin A was found up-regulated in response to lipopolysaccharide, 3 h post injection. Sporadic occurrence of other immune related peptides/proteins also pointed to a rapid response (0.5?3 h p.i.). Altogether, our results indicate that the gills of blue mussels constitute an important first line defence adapted to act at the pH of seawater. The antimicrobial activity of the gills is however modulated when mussels are under the pressure of ocean acidification, which may give future advantages for invading pathogens.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-11-22.

Supplement to: Hernroth, Bodil; Baden, Susanne; Tassidis, H; Hörnaeus, K; Guillemant, J; Bergström Lind, S; Bergquist, Jonas (2016): Impact of ocean acidification on antimicrobial activity in gills of the blue mussel (Mytilus edulis). Fish & Shellfish Immunology, 55, 452-459

Identifier
DOI https://doi.org/10.1594/PANGAEA.868737
Related Identifier IsSupplementTo https://doi.org/10.1016/j.fsi.2016.04.007
Related Identifier IsDocumentedBy https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.868737
Provenance
Creator Hernroth, Bodil; Baden, Susanne ORCID logo; Tassidis, H ORCID logo; Hörnaeus, K; Guillemant, J ORCID logo; Bergström Lind, S; Bergquist, Jonas (ORCID: 0000-0002-4597-041X)
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 672 data points
Discipline Earth System Research