We estimated plant community composition as the projection cover of each vascular plant and moss species. We measured the following vascular plant functional traits: plant height, leaf size (LS), specific leaf area (SLA) and leaf carbon (C) and nitrogen (N) contents from the most common species in each site. We measured the following Sphagnum traits: stand density (number of shoots cm-2), capitulum width (cap_width, mm) and dry weight (cap_dw, mg), fascicle density (number cm-1), capitulum dry matter content (CDMC, mg g-1), capitulum water content (cap_wc, g g-1) and capitulum C and N contents and C:N ratio.The data was collected from 47 northern peatlands located in land uplift regions in Finland, Sweden and Russia: Sävar on the west coast of Bothnian Bay (63o50'N, 20o40'E, Sweden), Siikajoki (64°45' N, 24°43', Finland) and Hailuoto island (65°07' N, 24°71' E, Finland) on the east coast of Bothnian Bay, and Belomorsk-Virma (63°90' N, 36°50' E, Russia) on the coast of the White Sea. The data was collected from the different areas as follows: Siikajoki sites were sampled in August 2016, Sävar sites at the end of June 2017, Hailuoto sites during July 2017 and Belomorsk sites at the end of August 2017. We determined the plant community composition by visually estimating the projection cover of each species separately for field (vascular plants) and moss layer using the scale 0.1%, 0.25%, 0.5%, 1%, 2%, 3%, etc. There were fifteen 50 x 50 cm plots in each peatland at Siikajoki and Belomorsk-Virma, and 10 at Sävar and Hailuoto. The sample plots were located five meters apart along a transect starting from the generally treeless peatland margin and heading towards the peatland center. Plant traits were measured as follows: To measure SLA (i.e., the one-sided area of a fresh leaf divided by its oven-dry mass, cm2 g-1), the freshly picked leaf or a sample of 3 leaves in case of shrubs with small leaves was pressed flat between a board and a glass and a standardized photo was taken. The leaf size (LS, cm2) was analysed from the photos with ImageJ. The leaf samples were stored in paper bags and dried at 60°C for a minimum of 48h. The dried samples were weighed, and SLA calculated. The SLA samples were used for carbon (C) and nitrogen (N) content analysis. Leaves from each species from each site were pooled into one sample, which was milled (Retsch MM301 mill) and analyzed for C and N concentrations and for C:N ration on a CHNS–O Elemental analyzer (EA1110) (University of Oulu).Sphagnum moss samples for trait measurements were collected with a corer (7 cm diameter, area 38 cm2, height at least 8 cm) to maintain the natural density of the stand. Stand density was measured as the number of mosses in the sample. From ten individuals we measured the width of the capitula and counted the number of fascicles from a five cm segment below capitulum. We separated the ten moss individuals into capitulum and stem (5 cm below capitula) wetted them and allowed to dry on top of tissue paper for 2 min before weighing them for water filled fresh weight. Samples were placed on paper bags and dried at 60 °C for at least 48h after which the dry mass of capitula and stems were measured. CDMC and cap_wc were calculated from the fresh and dry weight. We used the capitula samples for analyses of C and N concentrations and for C:N ratio, and treated them similarly to vascular plant samples.The data was collected to find out how functional diversity and trait composition of vascular plant and Sphagnum moss communities develops during peatland succession across land uplift regions.