Seawater carbonate chemistry and physiological and mechanical properties of the starfish Asterias rubens in a laboratory experiment


The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. Its impact will depend on the considered organisms and ecosystems. The intertidal may harbor organisms pre-adapted to the upcoming changes as they face tidal pH and temperature fluctuations. However, these environments will be more affected as shallow waters will face the highest decrease in seawater pH. In this context, the effects of reduced environmental pH on the physiology and tube feet mechanical properties of the intertidal starfish Asterias rubens, a top predator, were investigated during 15 and 27 days. A. rubens showed a respiratory acidosis with its coelomic fluid pH always lower than that of seawater. This acidosis was most pronounced at pH 7.4. Notwithstanding, the starfish showed no significant variations in RNA/DNA ratio of different tissues and in tube feet strength. However, respiration rates were significantly lower for individuals maintained at reduced seawater pH. Within the ocean acidification context, the present results suggest that A. rubens withstands the effects of reduced seawater pH, at least for medium term exposures.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2013-11-29.

Supplement to: Collard, Marie; Catarino, Ana Isabel; Bonnet, Stéphanie; Flammang, Patrick; Dubois, Philippe (2013): Effects of CO2-induced ocean acidification on physiological and mechanical properties of the starfish Asterias rubens. Journal of Experimental Marine Biology and Ecology, 446, 355-362

Related Identifier
Related Identifier
Metadata Access
Creator Collard, Marie ORCID logo; Catarino, Ana Isabel ORCID logo; Bonnet, Stéphanie; Flammang, Patrick ORCID logo; Dubois, Philippe
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2013
Rights Creative Commons Attribution 3.0 Unported;
OpenAccess true
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 49343 data points
Discipline Earth System Research