Analysis of manganese deposits from the Alps

DOI

Deposits with unusually high Mn contents sampled at Monte Mangart in the Julian Alps include organic-rich marlstone and black shale with interbedded manganoan and siliceous limestone, which were deposited during the early Toarcian Oceanic Anoxic Event. Mn enrichment during that period has been related to global sea-level change coincident with increasing subsidence rate. The formation of Fe-Mn nodules, marking a hardground at the base of the Monte Mangart section, seems to be triggered by release of Mn from remote hydrothermal vents into a region of relatively elevated submarine topography where oxidizing conditions prevailed. However, very high Mn contents in carbonate phases above the hardground imply an additional diagenetic source of this element in the lower part of this section. The whole stratigraphic sequence (ca 30 m) displays a transition from Mn-rich (up to 8.8%) sediments, in the lower part, to Mn-poor (less than 1.8%) sediments in the middle and upper parts. The drastic decrease in Mn content's up-section is accompanied by a clear decrease in the mean size of pyrite framboids, indicating more intense anoxia/euxinia in the water column. In the presence of Mn2+, conditions of high alkalinity induced precipitation of Mn carbonates during early diagenetic processes. Negative [delta]13Ccarb values coincident with high Mn contents indicate involvement of organic matter in the mineralization process. The striking similarity of Ce/Ce* and Mn profiles demonstrates that, consistent with redox-chemistry of Mn and Ce under anoxic conditions, Ce3+ and Mn2+ were mobilized and released into pore water where precipitation of Mn carbonates occurred.

From 1983 until 1989 NOAA-NCEI compiled the NOAA-MMS Marine Minerals Geochemical Database from journal articles, technical reports and unpublished sources from other institutions. At the time it was the most extended data compilation on ferromanganese deposits world wide. Initially published in a proprietary format incompatible with present day standards it was jointly decided by AWI and NOAA to transcribe this legacy data into PANGAEA. This transfer is augmented by a careful checking of the original sources when available and the encoding of ancillary information (sample description, method of analysis...) not present in the NOAA-MMS database.

Supplement to: Sabatino, Nadia; Neri, Rodolfo; Bellanca, Adriana; Jenkyns, Hugh C; Masetti, D; Scopelliti, G (2011): Petrography and high-resolution geochemical records of Lower Jurassic manganese-rich deposits from Monte Mangart, Julian Alps. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(1-2), 97-109

Identifier
DOI https://doi.org/10.1594/PANGAEA.870912
Related Identifier https://doi.org/10.1016/j.palaeo.2010.10.039
Related Identifier https://doi.org/10.7289/V52Z13FT
Related Identifier https://store.pangaea.de/Projects/NOAA-MMS/Fig_Sabatino_2011.jpg
Related Identifier https://store.pangaea.de/Projects/NOAA-MMS/Fig2_Sabatino_2011.jpg
Related Identifier https://doi.org/10.7289/V53X84KN
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.870912
Provenance
Creator Sabatino, Nadia ORCID logo; Neri, Rodolfo; Bellanca, Adriana; Jenkyns, Hugh C ORCID logo; Masetti, D; Scopelliti, G ORCID logo
Publisher PANGAEA
Publication Year 2011
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Publication Series of Datasets; Collection
Format application/zip
Size 2 datasets
Discipline Earth System Research
Spatial Coverage (13.650 LON, 46.445 LAT); Monte Mangart, Slovenia