Seawater carbonate chemistry and performance of native and non-native adult oysters

DOI

Globally, non-native species (NNS) have been introduced and now often entirely replace native species in captive aquaculture; in part, a result of a perceived greater resilience of NSS to climate change and disease. Here, the effects of ocean acidification and warming on metabolic rate, feeding rate, and somatic growth was assessed using two co-occurring species of oysters – the introduced Pacific oyster Magallana gigas (formerly Crassostrea gigas), and native flat oyster Ostrea edulis. Biological responses to increased temperature and pCO2 combinations were tested, the effects differing between species. Metabolic rates and energetic demands of both species were increased by warming but not by elevated pCO2. While acidification and warming did not affect the clearance rate of O. edulis, M. gigas displayed a 40% decrease at ∼750 ppm pCO2. Similarly, the condition index of O. edulis was unaffected, but that of M. gigas was negatively impacted by warming, likely due to increased energetic demands that were not compensated for by increased feeding. These findings suggest differing stress from anthropogenic CO2 emissions between species and contrary to expectations, this was higher in introduced M. gigas than in the native O. edulis. If these laboratory findings hold true for populations in the wild, then continued CO2 emissions can be expected to adversely affect the functioning and structure of M. gigas populations with significant ecological and economic repercussions, especially for aquaculture. Our findings strengthen arguments in favour of investment in O. edulis restoration in UK waters.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-09-26.

Identifier
DOI https://doi.org/10.1594/PANGAEA.949048
Related Identifier IsSupplementTo https://doi.org/10.1016/j.marenvres.2018.10.003
Related Identifier IsDocumentedBy https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.949048
Provenance
Creator Lemasson, Anaëlle J; Hall-Spencer, Jason M ORCID logo; Fletcher, Stephen ORCID logo; Provstgaard-Morys, Samuel; Knights, Antony M ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2018
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 13743 data points
Discipline Earth System Research
Spatial Coverage (-4.221 LON, 50.392 LAT)
Temporal Coverage Begin 2015-07-01T00:00:00Z
Temporal Coverage End 2016-01-31T00:00:00Z