This dataset provides friction data from ring-shear tests on glass beads with a diameter of less than 50 µm used in analogue modelling of tectonic processes as a rock analogue for “weak” layers in the earth’s upper crust (e.g. Klinkmüller et al., 2016; Ritter et al., 2016; Lohrmann et al., 2003) or as “seismogenic” crust (Rudolf et al., 2022). The glass beads are characterized by means of internal friction coefficients µ and cohesion C.
According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.47 , µD = 0.44, and µR = 0.47, respectively (Table 5). Cohesion of the material ranges between 50 Pa and 70 Pa. The material shows a neglectable rate-weakening of <1% per ten-fold change in shear velocity v.
The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at the Helmholtz Laboratory for Tectonic Modelling (HelTec) of the GFZ German Research Centre for Geosciences in Potsdam. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures (<20 kPa) and shear velocities (<1 mm/sec) similar to sandbox experiments. In this tester, a granular bulk material layer is sheared internally at constant normal stress σN and shear velocity v while shear force and lid displacement (corresponding to density and volume change ΔV) are measured continuously. For more details see Klinkmüller et al. (2016) and Ritter et al. (2016).