Strong local, not global, controls on marine pyrite sulfur isotopes

DOI

Understanding variation in the sulfur isotopic composition of sedimentary pyrite (δ34Spyr) is motivated by the key role of sulfur biogeochemistry in regulating Earth's surface oxidation state. Until recently, the impact of local depositional conditions on δ34Spyr has remained underappreciated, and stratigraphic variations in δ34Spyr were interpreted mostly to reflect global changes in biogeochemical cycling. We present two coeval δ34Spyr records from shelf and basin settings in a single sedimentary system. Despite their proximity and contemporaneous deposition, these two records preserve radically different geochemical signals. Swings of ~65‰ in shelf δ34Spyr track short-term variations in local sedimentation and are completely absent from the abyssal record. In contrast, a long-term ~30‰ decrease in abyssal δ34Spyr reflects regional changes in ocean circulation and/or sustained pyrite formation. These results highlight strong local controls on δ34Spyr, calling for reevaluation of the current practice of using δ34Spyr stratigraphic variations to infer global changes in Earth's surface environment.

Identifier
DOI https://doi.pangaea.de/10.1594/PANGAEA.937620
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.937620
Provenance
Creator Pasquier, Virgil ORCID logo; Fike, David A ORCID logo; Halevy, Itay
Publisher PANGAEA
Publication Year 2024
Rights Creative Commons Attribution 4.0 International; Data access is restricted (moratorium, sensitive data, license constraints); https://creativecommons.org/licenses/by/4.0/
OpenAccess false
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 1732 data points
Discipline Earth System Research
Spatial Coverage (-171.499W, -44.937S, 172.022E, -41.786N); South Pacific Ocean
Temporal Coverage Begin 1998-09-12T00:00:00Z
Temporal Coverage End 1998-09-24T00:00:00Z