Classification Endmember Selection with Multi-Temporal Hyperspectral Data

DOI

In hyperspectral image classification, so-called spectral endmembers are used as reference data. These endmembers are either extracted from an image or taken from another source. Research has shown that endmembers extracted from an image usually perform best when classifying a single image. However, it is unclear if this also holds when classifying multi-temporal hyperspectral datasets. In this paper, we use spectral angle mapper, which is a frequently used classifier for hyperspectral datasets to classify multi-temporal airborne visible/infrared imaging spectrometer (AVIRIS) hyperspectral imagery. Three classifications are done on each of the images with endmembers being extracted from the corresponding image, and three more classifications are done on the three images while using averaged endmembers. We apply image-to-image registration and change detection to analyze the consistency of the classification results. We show that the consistency of classification accuracy using the averaged endmembers (around 65%) outperforms the classification results generated using endmembers that are extracted from each image separately (around 40%). We conclude that, for multi-temporal datasets, it is better to have an endmember collection that is not directly from the image, but is processed to a representative average.

Date Submitted: 2020-07-20

Identifier
DOI https://doi.org/10.17026/dans-zxe-e2sa
Metadata Access https://phys-techsciences.datastations.nl/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.17026/dans-zxe-e2sa
Provenance
Creator T Mr. Jiang
Publisher DANS Data Station Phys-Tech Sciences
Contributor M Th Koelen; Remote Sensing
Publication Year 2020
Rights DANS Licence; info:eu-repo/semantics/restrictedAccess; https://doi.org/10.17026/fp39-0x58
OpenAccess false
Contact M Th Koelen (Faculty of Geo-Information Science and Earth Observation)
Representation
Resource Type Dataset
Format application/octet-stream; image/tiff; application/zip; text/plain; charset=US-ASCII
Size 55898100; 5790; 55792854; 6105; 52516080; 6100; 222; 2932680; 2922840; 1512; 1087; 76143; 1296; 956; 1070; 929; 4120824; 1155; 4096608; 1175; 1195; 963732; 1532; 1527; 1505
Version 1.0
Discipline Earth and Environmental Science; Environmental Research; Geosciences; Natural Sciences