Nitrogen isotopic composition and chemical composition of altered oceanic crust from ODP Legs 129 and 185

DOI

Knowledge of the subduction input flux of nitrogen (N) in altered oceanic crust (AOC) is critical in any attempt to mass-balance N across arc-trench systems on a global or individual-margin basis. We have employed sealed-tube, carrier-gas-based methods to examine the N concentrations and isotopic compositions of AOC. Analyses of 53 AOC samples recovered on DSDP/ODP legs from the North and South Pacific, the North Atlantic, and the Antarctic oceans (with larger numbers of samples from Site 801 outboard of the Mariana trench and Site 1149 outboard of the Izu trench), and 14 composites for the AOC sections at Site 801, give N concentrations of 1.3 to 18.2 ppm and d15N_air of -11.6‰ to +8.3‰, indicating significant N enrichment probably during the early stages of hydrothermal alteration of the oceanic basalts. The N-d15N modeling for samples from Sites 801 and 1149 (n=39) shows that the secondary N may come from (1) the sedimentary N in the intercalated sediments and possibly overlying sediments via fluid-sediment/rock interaction, and (2) degassed mantle N2 in seawater via alteration-related abiotic reduction processes. For all Site 801 samples, weak correlation of N and K2O contents indicates that the siting of N in potassic alteration phases strongly depends on N availability and is possibly influenced by highly heterogeneous temperature and redox conditions during hydrothermal alteration.The upper 470-m AOC recovered by ODP Legs 129 and 185 delivers approximately 800 kg/km N annually into the Mariana margin. If the remaining less-altered oceanic crust (assuming 6.5 km, mostly dikes and gabbros) has MORB-like N of 1.5 ppm, the entire oceanic crust transfers 5100 kg/km N annually into that trench. This N input flux is twice as large as the annual N input of 2500 kg/km in seafloor sediments subducting into the same margin, demonstrating that the N input in oceanic crust, and its isotopic consequences, must be considered in any assessment of convergent margin N flux.

Supplement to: Li, Long; Bebout, Gray E; Idleman, Bruce D (2007): Nitrogen concentration and delta 15N of altered oceanic crust obtained on ODP Legs 129 and 185: Insights into alteration-related nitrogen enrichment and the nitrogen subduction budget. Geochimica et Cosmochimica Acta, 71(9), 2344-2360

Identifier
DOI https://doi.org/10.1594/PANGAEA.711140
Related Identifier IsSupplementTo https://doi.org/10.1016/j.gca.2007.02.001
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.711140
Provenance
Creator Li, Long ORCID logo; Bebout, Gray E ORCID logo; Idleman, Bruce D ORCID logo
Publisher PANGAEA
Publication Year 2007
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Publication Series of Datasets; Collection
Format application/zip
Size 8 datasets
Discipline Earth System Research
Spatial Coverage (-33.641W, -51.336S, 134.874E, 36.879N); Antarctic Ocean/Tasman Sea/RIDGE; South Pacific/BASIN; North Atlantic/VALLEY; North Atlantic/CONT RISE; North Pacific/Philippine Sea/RIDGE; North Pacific/TRENCH; North Pacific/SEDIMENT POND; North Pacific Ocean
Temporal Coverage Begin 1973-03-20T00:00:00Z
Temporal Coverage End 1999-06-13T16:15:00Z