Geochemistry measured on sediment core GeoB12309-5

DOI

Laminated sediment records from the oxygen minimum zone in the Arabian Sea offer unique ultrahigh-resolution archives for deciphering climate variability in the Arabian Sea region. Although numerous analytical techniques are available it has become increasingly popular during the past decade to analyze relative variations of sediment cores' chemical signature by non-destructive X-ray fluorescence (XRF) core scanning. We carefully selected an approximately 5 m long sediment core from the northern Arabian Sea (GeoB12309-5: 24°52.3' N; 62°59.9' E, 956 m water depth) for a detailed, comparative study of high-resolution techniques, namely non-destructive XRF core scanning (0.8 mm resolution) and ICP-MS/OES analysis on carefully selected, discrete samples (1 mm resolution). The aim of our study was to more precisely define suitable chemical elements that can be accurately analyzed and to determine which elemental ratios can be interpretated down to sub-millimeter-scale resolutions. Applying the Student's t-test our results show significantly correlating (1% significance level) elemental patterns for all S, Ca, Fe, Zr, Rb, and Sr, as well as the K/Ca, Fe/Ti and Ti/Al ratios that are all related to distinct lithological changes. After careful consideration of all errors for the ICP analysis we further provide respective factors of XRF Core Scanner software error's underestimation by applying Chi-square-tests, which is especially relevant for elements with high count rates. As demonstrated by these new, ultra-high resolution data core scanning has major advantages (high-speed, low costs, few sample preparation steps) and represents an increasingly required alternative over the time consuming, expensive, elaborative, and destructive wet chemical analyses (e.g., by ICP-MS/OES after acid digestions), and meanwhile also provides high-quality data in unprecedented resolution.

Supplement to: Wilhelms-Dick, Dorothee; Westerhold, Thomas; Röhl, Ursula; Wilhelms, Frank; Vogt, Christoph; Hanebuth, Till J J; Römmermann, Helge; Kriews, Michael; Kasten, Sabine (2012): A comparison of mm scale resolution techniques for element analysis in sediment cores. Journal of Analytical Atomic Spectrometry, 27(9), 1574-1584

Identifier
DOI https://doi.org/10.1594/PANGAEA.770427
Related Identifier IsSupplementTo https://doi.org/10.1039/c2ja30148b
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.770427
Provenance
Creator Wilhelms-Dick, Dorothee; Westerhold, Thomas ORCID logo; Röhl, Ursula ORCID logo; Wilhelms, Frank ORCID logo; Vogt, Christoph ORCID logo; Hanebuth, Till J J ORCID logo; Römmermann, Helge; Kriews, Michael; Kasten, Sabine ORCID logo
Publisher PANGAEA
Publication Year 2012
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Publication Series of Datasets; Collection
Format application/zip
Size 4 datasets
Discipline Earth System Research
Spatial Coverage (62.998 LON, 24.872 LAT); OMZ 950