Organic matter (OM) is known to be an important reductant in sediment-hosted base metal deposits like the European Kupferschiefer. However, the precise nature of interactions between OM and hydrothermal fluids are still debated as well as how the interconnected reactions develop over geological timescales.
This dataset provides for the first time bulk, compositional and stable isotope data of hydrocarbons, biomarkers and organonitrogen, -sulfur and-oxygen (NSO) compounds for the mineralized Kupferschiefer Spremberg-Graustein field in Eastern Germany based on samples from two drill cores. The study aims to help to better understand the role that organic matter plays during the mineralisation and formation of the sedimentary ore deposit within the Kupferschiefer with a focus on stable hydrogen isotope compositions and NSO compositional data to especially address the origin and to assess the oxidative nature of the brines that caused the mineralization in the Spremberg-Graustein field.
The data publication includes bulk, compositional and stable isotope data on inorganic metals and organic matter. The data about metal contents were generated using ICP-MS while those on the organic matter were generated using Rock-Eval pyrolysis, a microscope, a Soxhlet apparatus, medium pressure liquid chromatography (MPLC), gas chromatography with flame ionization (GC-FID) and mass spectrometric detection (GC-MS), gas chromatography isotope ratio mass spectrometry (GC-IRMS) and ultrahigh resolution mass spectrometry (Fourier Transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) with Electrospray ionization (ESI) and Atmospheric pressure photoionization (APPI). The full description of samples, methods and data is given in the following sections.