Replication Data for NestE: Modeling Nested Relational Structures for Knowledge Graph Reasoning (AAAI'24)

DOI

This code is a PyTorch implementation of the paper "NestE: Modeling Nested Relational Structures for Knowledge Graph Reasoning (AAAI'24)".

NestE is a knowledge graph embedding method that can encode nested facts represented by quoted triples (h,r,t) in which the subject and object are triples themselves, e.g., ((BarackObama, holds_position, President), succeed_by, (DonaldTrump, holds_position, President)).

We implement six variant models of NetsE based on different hypercomplex number systems. NestE_Q.py for NestE with quaternion. NestE_H.py for NestE with hyperbolic quaternion. NestE_D.py for NestE with split quaternion. NestE_B.py, NestE_HB.py, and NestE_DB.py are the respective version with a translation component.

This code is used to reproduce the experiments of the paper. To execute the code, follow the instructions in the README.md file.

Further information can be found in the README.md.

Identifier
DOI https://doi.org/10.18419/darus-3978
Metadata Access https://darus.uni-stuttgart.de/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.18419/darus-3978
Provenance
Creator Xiong, Bo ORCID logo; Nayyeri, Mojtaba ORCID logo; Luo, Linhao (ORCID: 0000-0003-0027-942X); Wang, Zihao ORCID logo; Pan, Shirui (ORCID: 0000-0003-0794-527X); Staab, Steffen ORCID logo
Publisher DaRUS
Contributor Xiong, Bo; Staab, Steffen
Publication Year 2024
Funding Reference European Commission info:eu-repo/grantAgreement/EC/H2020/860801
Rights info:eu-repo/semantics/openAccess
OpenAccess true
Contact Xiong, Bo (Universität Stuttgart); Staab, Steffen (Universität Stuttgart)
Representation
Resource Type Dataset
Format text/plain; application/octet-stream; text/x-python; text/x-c; application/x-sh; image/jpeg; text/markdown
Size 69; 40322315; 47583243; 100; 98; 102; 40885243; 42038883; 49248611; 50656403; 48696571; 42985875; 50682003; 48440571; 49235811; 47468043; 96; 97; 99; 83; 101; 55; 84; 85; 86; 2445; 2519; 2524; 23717; 218307; 207617; 7278; 4799; 2234; 2249; 2273; 1501; 78528; 5999; 6104; 5379; 5467; 5406; 5494; 7827; 9424; 9567; 7570; 13480; 9434; 7357; 13481; 7828; 7338; 10362; 10364; 7941; 2061; 2125; 2130; 4612; 2409; 2447; 2450; 339287; 999756; 280057; 4741631; 2303; 2008; 11; 5059; 5169; 10169; 10330; 9538; 9682; 9574; 9718; 9634; 7877; 7989; 7913; 8025; 9854; 7973; 7979; 7894; 8008; 8013; 8752; 8757; 4553; 4558; 6391; 6495; 6494; 359; 243; 345; 438; 773; 311; 365; 444; 393; 247; 317; 371; 351; 271; 458; 375; 389; 341; 840; 395; 250; 174; 203; 675; 327; 242; 108; 426; 297; 485; 495; 519; 113; 1500; 1512; 1536; 1046; 9817; 9831; 8347; 831; 849; 873; 318; 2175; 2155; 2173; 2482; 7589; 13787; 7608; 13791; 10986; 7612; 13789; 22; 10990; 279154; 11097; 4439; 4513; 4518; 894; 10871; 19183; 57384; 48049; 136; 12154; 54927; 15764; 63310; 1160; 161; 13610; 106; 33; 1789; 1817; 1822; 2855; 2899; 2904; 21429; 2694; 1440; 1460; 1484; 951; 2140; 2150; 954; 501; 511; 535; 121; 144; 1645; 390707; 437; 9011; 50384; 37501; 858; 50326; 49255; 6766; 2121; 39051; 298; 291; 38736; 84883; 8655; 986; 4414; 4475; 4499; 4286; 12564; 12044; 11113; 20065; 15767; 683050; 6036; 62468; 90417; 403126; 3116076; 99800; 173354; 14199; 312255; 15955; 6447; 6384; 6408; 5703; 5995; 6080; 6821; 7867; 3927; 3999; 4000; 3393; 2612; 2615; 3107; 3161; 3164; 3045; 3079; 3084; 706; 593; 11138; 7803; 50316; 12106; 390515; 1976; 22127; 85098; 39115; 1745
Version 1.0
Discipline Other