Wideband integrated bioaerosol sensor (WIBS) hyper-fluorescent particle number concentrations measured in the Swiss container during MOSAiC 2019/2020


These datasets contain the total particle number concentrations of hyper-fluorescent particles of sizes 0.5 to 20 μm (optical diameter). The WIBS measures the size, asymmetry and fluorescence of particles with an optical diameter of 0.5 – 20 µm. Detected particles are excited by two UV flashlamps at wavelengths of 280 and 370 nm and their emitted fluorescence is measured by two photomultipliers with bandwidths of 310 - 400 nm, and 420 - 650 nm. The WIBS counts excited particles at a maximum frequency of 125 Hz, which corresponds to a maximum concentration of 2.5*104 particles/L with a sample flow of 0.3 L/min. Excited particles were classified as fluorescent if their fluorescent intensity exceeded the background intensity by three standard deviations (3σ) and as hyper-fluorescent if the fluorescent intensity exceeded the background intensity by 9σ. Excited particles with a lower fluorescent intensity were considered to be non-fluorescent. The background fluorescence was determined by measuring the fluorescent signal in the measurement chamber in absence of particles. Background measurements were performed every 26 h. The combination of two excitation wavelengths and two detector wavebands allows the classification of fluorescent particles into seven types: A, B, C, AB, AC, BC, and ABC (Perring et al. (2015); Savage et al. (2017)). For further information about the instrumental setup, refer to Heutte et al. (Submitted).

DOI https://doi.org/10.1594/PANGAEA.961123
Related Identifier IsPartOf https://doi.org/10.1594/PANGAEA.961065
Related Identifier IsDerivedFrom https://doi.org/10.1594/PANGAEA.924672
Related Identifier IsDerivedFrom https://doi.org/10.1594/PANGAEA.924678
Related Identifier IsDerivedFrom https://doi.org/10.1594/PANGAEA.924669
Related Identifier IsDerivedFrom https://doi.org/10.1594/PANGAEA.926830
Related Identifier IsDerivedFrom https://doi.org/10.1594/PANGAEA.926911
Related Identifier References https://doi.org/10.5194/amt-15-4195-2022
Related Identifier References https://doi.org/10.1594/PANGAEA.941335
Related Identifier References https://doi.org/10.1002/2014JD022495
Related Identifier References https://doi.org/10.5194/amt-10-4279-2017
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.961123
Creator Beck, Ivo ORCID logo; Moallemi, Alireza; Rolo, Margarida; Quéléver, Lauriane ORCID logo; Jokinen, Tuija ORCID logo; Laurila, Tiia; Schmale, Julia ORCID logo
Publisher PANGAEA
Publication Year 2023
Funding Reference Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven https://doi.org/10.13039/501100003207 Crossref Funder ID AFMOSAiC-1_00 Multidisciplinary drifting Observatory for the Study of Arctic Climate; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven https://doi.org/10.13039/501100003207 Crossref Funder ID AWI_PS122_00 Multidisciplinary drifting Observatory for the Study of Arctic Climate / MOSAiC; Horizon 2020 https://doi.org/10.13039/501100007601 Crossref Funder ID 101003826 https://cordis.europa.eu/project/id/101003826 Climate Relevant interactions and feedbacks: the key role of sea ice and Snow in the polar and global climate system; Swiss National Science Foundation https://doi.org/10.13039/501100001711 Crossref Funder ID 188478 https://data.snf.ch/grants/grant/188478 Measurement-Based understanding of the aeRosol budget in the Arctic and its Climate Effects (MBRACE); Swiss Polar Institute https://doi.org/10.13039/501100015594 Crossref Funder ID DIRCR-2018-004 ; United States Department of Energy, Atmospheric Systems Research Program https://doi.org/10.13039/100006132 Crossref Funder ID DE-SC0022046 https://pamspublic.science.energy.gov/WebPAMSExternal/Interface/Common/ViewPublicAbstract.aspx?rv=a2093134-feb9-41c9-b69e-820c5a81d8d2&rtc=24&PRoleId=10 Closing the gap on understudied aerosol-climate processes in the rapidly changing central Arctic
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Resource Type Dataset
Format text/tab-separated-values
Size 21416 data points
Discipline Earth System Research
Spatial Coverage (-145.022W, 78.114S, 136.967E, 89.995N); Arctic Ocean; North Greenland Sea
Temporal Coverage Begin 2019-10-01T00:00:00Z
Temporal Coverage End 2020-09-30T23:00:00Z