In ocean margin sediments both marine and terrestrial organic matter (OM) are buried but the factors governing their relative preservation and degradation are not well understood. In this study, we analysed the degree of preservation of marine isoprenoidal and soil-derived branched glycerol dialkyl glycerol tetraethers (GDGTs) upon long-term oxygen exposure in OM-rich turbidites from the Madeira Abyssal Plain by analyzing GDGT concentrations across oxidation fronts. Relative to the anoxic part of the turbidites ca. 7-20% of the soil-derived branched GDGTs were preserved in the oxidized part while only 0.2-3% of the marine isoprenoid GDGT crenarchaeol was preserved. Due to these different preservation factors the Branched Isoprenoid Tetraether (BIT) index, a ratio between crenarchaeol and the major branched GDGTs that is used as a tracer for soil-derived organic matter, substantially increases from 0.02 to 0.4. Split Flow Thin Cell (SPLITT) separation of turbidite sediments showed that the enhanced preservation of soil-derived carbon was a general phenomenon across the fine particle size ranges (<38 mm). Calculations reveal that, despite their relatively similar chemical structures, degradation rates of crenarchaeol are 2-fold higher than those of soil-derived branched GDGTs, suggesting preferential soil OM preservation possibly due to matrix protection.
Supplement to: Huguet, Carme; de Lange, Gert J; Gustafsson, Örjan; Middelburg, Jack J; Sinninghe Damsté, Jaap S; Schouten, Stefan (2008): Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal Plain). Geochimica et Cosmochimica Acta, 72(24), 6061-6068