A high-resolution sea surface temperature and paleoproductivity reconstruction on a sedimentary record collected at 36°S off central-south Chile (GeoB 7165-1, 36°33'S, 73°40'W, 797 m water depth, core length 750 cm) indicates that paleoceanographic conditions changed abruptly between 18 and 17 ka. Comparative analysis of several cores along the Chilean continental margin (30°-41°S) suggests that the onset and the pattern of deglacial warming was not uniform off central-south Chile due to the progressive southward migration of the Southern Westerlies and local variations in upwelling. Marine productivity augmented rather abruptly at 13-14 ka, well after the oceanographic changes.We suggest that the late deglacial increase in paleoproductivity off central-south Chile reflects the onset of an active upwelling system bringing nutrient-rich, oxygen-poor Equatorial SubsurfaceWater to the euphotic zone, and a relatively higher nutrient load of the Antarctic Circumpolar Current. During the Last Glacial Maximum, when the Southern Westerlies were located further north, productivity off central-south Chile, in contrast to off northern Chile, was reduced due to direct onshore-blowing winds that prevented coastal upwelling and export production.
Supplement to: Mohtadi, Mahyar; Rossel, Pamela E; Lange, Carina Beatriz; Pantoja, Silvio; Böning, Philipp; Repeta, Daniel J; Grunwald, Maik; Lamy, Frank; Hebbeln, Dierk; Brumsack, Hans-Jürgen (2008): Deglacial pattern of circulation and marine productivity in the upwelling region off central-south Chile. Earth and Planetary Science Letters, 272, 221-230