Steering on-surface reactions through molecular steric hindrance and molecule-substrate van der Waals interactions

On-surface synthesis is a rapidly developing field involving chemical reactions on well-defined solid surfaces to access the synthesis of low-dimensional organic nanostructures which cannot be achieved via traditional solution chemistry. On-surface reactions critically depend on a high degree of chemoselectivity in order to achieve an optimum balance between the target structure and possible side products. In this record we provide data for the calculations that support a work that we recently published. In the published manuscript, we demonstrate the synthesis of graphene nanoribbons with a large unit cell based on steric hindrance-induced complete chemoselectivity as revealed by scanning probe microscopy measurements and density functional theory calculations. Our results disclose that combined molecule-substrate van der Waals interactions and intermolecular steric hindrance promote a selective aryl-aryl coupling, giving rise to high-quality uniform graphene nanostructures. The established coupling strategy has been used to synthesize two types of graphene nanoribbons with different edge topologies inducing a pronounced variation of the electronic energy gaps. The demonstrated chemoselectivity is representative of n-anthryl precursor molecules and may be further exploited to synthesize graphene nanoribbons with novel electronic, topological and magnetic properties with implications for electronic and spintronic applications.

Identifier
Source https://archive.materialscloud.org/record/2023.17
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:1635
Provenance
Creator Wang, Shiyong; Nishiuchi, Tomohiko; Pignedoli, Carlo A.; Yao, Xuelin; Di Giovannantonio, Marco; Zhao, Yan; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Ruffieux, Pascal; Fasel, Roman
Publisher Materials Cloud
Publication Year 2023
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering