Seawater carbonate chemistry and mussel attachment

DOI

Predicting how combinations of stressors will affect failure risk is a key challenge for the field of ecomechanics and, more generally, ecophysiology. Environmental conditions often influence the manufacture and durability of biomaterials, inducing structural failure that potentially compromises organismal reproduction, growth, and survival. Species known for tight linkages between structural integrity and survival include bivalve mussels, which produce numerous byssal threads to attach to hard substrate. Among the current environmental threats to marine organisms are ocean warming and acidification. Elevated pCO2 exposure is known to weaken byssal threads by compromising the strength of the adhesive plaque. This study uses structural analysis to evaluate how an additional stressor, elevated temperature, influences byssal thread quality and production. Mussels (Mytilus trossulus) were placed in controlled temperature and pCO2 treatments, and then, newly produced threads were counted and pulled to failure to determine byssus strength. The effects of elevated temperature on mussel attachment were dramatic; mussels produced 60% weaker and 65% fewer threads at 25°C in comparison to 10°C. These effects combine to weaken overall attachment by 64–88% at 25°C. The magnitude of the effect of pCO2 on thread strength was substantially lower than that of temperature and, contrary to our expectations, positive at high pCO2 exposure. Failure mode analysis localized the effect of temperature to the proximal region of the thread, whereas pCO2 affected only the adhesive plaques. The two stressors therefore act independently, and because their respective target regions are interconnected (resisting tension in series), their combined effects on thread strength are exactly equal to the effect of the strongest stressor. Altogether, these results show that mussels, and the coastal communities they support, may be more vulnerable to the negative effects of ocean warming than ocean acidification.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-07-07.

Identifier
DOI https://doi.org/10.1594/PANGAEA.922676
Related Identifier IsSupplementTo https://doi.org/10.1093/conphys/coz068
Related Identifier IsNewVersionOf https://www.bco-dmo.org/dataset/773556
Related Identifier IsDocumentedBy https://CRAN.R-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.922676
Provenance
Creator Newcomb, Laura A ORCID logo; George, Matthew N ORCID logo; O'Donnell, Michael J ORCID logo; Carrington, Emily ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2019
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 7049 data points
Discipline Earth System Research
Spatial Coverage (-123.010 LON, 48.520 LAT)
Temporal Coverage Begin 2012-05-01T00:00:00Z
Temporal Coverage End 2012-05-31T00:00:00Z