Using the ILLUSTRIS cosmological simulation project, we investigate the relation between the separation of galaxies in a pair, both in velocity and projected spatial separation space, and the probability that these interacting galaxies will merge in the future. From this analysis, we propose a new set of criteria to select close pairs of galaxies along with a new corrective term to be applied to the computation of the galaxy merger fraction. We then probe the evolution of the major and minor merger fraction using the latest MUSE deep observations over the Hubble Ultra Deep Field, Hubble Deep Field South, COSMOS-Gr30 and Abell 2744 regions. From a parent sample of 2483 galaxies with spectroscopic redshifts, we identify 366 close pairs spread over a large range of redshifts (0.2<z10^9.5^M_{sun}. Beyond this redshift, the fraction decreases down to ~5% at z~6. The major merger fraction for lower mass primary galaxies M*<10^9.5^M{sun}_, seems to follow a more constant evolutionary trend with redshift. Thanks to the addition of new MUSE fields and new selection criteria, the increased statistics of the pair samples allow to narrow significantly the error bars compared to our previous analysis (Ventou et al., 2017A&A...608A...9V). The evolution of the minor merger fraction is roughly constant with cosmic time, with a fraction of 20% at z<3 and a slow decrease between 3<z<6 to 8-13%.
Cone search capability for table J/A+A/631/A87/major (Major close pairs of galaxies (table B3))
Cone search capability for table J/A+A/631/A87/minor (Minor close pairs of galaxies (table B4))