We present ultraviolet (UV) and optical photometry and spectra of the 1999aa-like supernova (SN) iPTF14bdn. The UV data were observed using the Swift Ultraviolet/Optical Telescope (UVOT) and constitute the first UV spectral series of a 1999aa-like SN. From the photometry, we measure {Delta}m_15_(B)=0.84+/-0.05mag and blue UV colors at epochs earlier than -5 days. The spectra show that the early-time blue colors are the result of less absorption between 2800-3200{AA} than is present in normal SNe Ia. Using model spectra fits of the data at -10 and +10days, we identify the origin of this spectral feature to be a temperature effect in which doubly ionized iron group elements create an opacity "window". We determine that the detection of high temperatures and large quantities of iron group elements at early epochs imply the mixing of a high Ni mass into the outer layers of the SN ejecta. We also identify the source of the I-band secondary maximum in iPTF14bdn to be the decay of FeIII to FeII, as is seen in normal SNe Ia.