In this study we showed the potential of using ecological principles including interspecific facilitation processes of aquatic plants (Azolla filiculoides) and worms (Oligochaeta, Tubificidae) in waste recovery and biomass production. This was investigated by developing a biocascade with monocultures of plants and aquatic worms that was fed on activated sludge. Tubificidae had an average relative growth rate of 0.02 g g-1 DW d-1 whereby sludge predation resulted in 45% sludge reduction. When Tubificidae were present in the biocascade, A. filiculoides biomass production significantly increased to a relative growth rate of 0.15 g g-1 DW d-1. The activity of Tubificidae mostly affected total suspended solids, chemical oxygen demand and ammonium concentration in the first compartment of the biocascade. Additionally, nitrification rates increased and the water acidified, leading to increased carbon dioxide concentrations and dissolved phosphorus-binding metals (zinc, iron, aluminium and manganese) that stimulated A. filiculoides growth. The high sludge reduction (45%) and phosphorus sequestration (133 mmol m-3 d-1) show a strong potential of the biocascade for combined sludge waste reduction and P recovery from wastewater.
Date Submitted: 2023-07-18