Supplementary data: System identification of a gyroscopic rotor throughout rotor-model-free control using the frequency domain LMS

The data contains the measurement data of the passive performance and the active vibration control of the rotor system as well as the transfer functions from our FEM model. The used rotor test-rig has an active bearing which comprises two piezo actuators. We implemented a model-based LMS control combined with IFF to eliminate the forces in the first bearing plane. The performance of this algorithm is compared to a rotor-model-free implementation of the LMS in combination with IFF which is extended by the frequency domain approach. We furthermore added an algorithm to compensate for the time delay caused by the used transformation. All three controllers are investigated on the test-rig. We then use the rotor-model-free control to estimate the transfer functions from actuator voltages to disc displacements and bearing forces. Two run-outs are performed to do so, one with IFF and one with IFF in combination with the rotor-model-free frequency domain LMS. Read the publication for more details.

Identifier
Source https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3453
Metadata Access https://tudatalib.ulb.tu-darmstadt.de/oai/openairedata?verb=GetRecord&metadataPrefix=oai_datacite&identifier=oai:tudatalib.ulb.tu-darmstadt.de:tudatalib/3453
Provenance
Creator Jungblut, Jens; Fischer, Christian; Rinderknecht, Stephan
Publisher TU Darmstadt
Contributor Deutsche Forschungsgemeinschaft; TU Darmstadt
Publication Year 2022
Funding Reference Deutsche Forschungsgemeinschaft info:eu-repo/grantAgreement/DFG/RI2086/16-1/AMOS:AnalytischeMe
Rights Creative Commons Attribution 4.0; info:eu-repo/semantics/openAccess
OpenAccess true
Contact https://tudatalib.ulb.tu-darmstadt.de/page/contact
Representation
Language English
Resource Type Dataset
Format application/zip; text/plain
Discipline Other