The prediction of the PLANCK-constrained primordial lithium abundance in the Universe is in discordance with the observed Li abundances in warm Population II dwarf and subgiant stars. Among the physically best motivated ideas, it has been suggested that this discrepancy can be alleviated if the stars observed today had undergone photospheric depletion of lithium. The cause of this depletion is investigated by accurately tracing the behaviour of the lithium abundances as a function of effective temperature. Globular clusters are ideal laboratories for such an abundance analysis as the relative stellar parameters of their stars can be precisely determined. We performed a homogeneous chemical abundance analysis of 144 stars in the metal-poor globular cluster M30, ranging from the cluster turnoff point to the tip of the red giant branch. Non-local thermal equilibrium (NLTE) abundances for Li, Ca, and Fe were derived where possible by fitting spectra obtained with VLT/FLAMES-GIRAFFE using the quantitative-spectroscopy package SME. Stellar parameters were derived by matching isochrones to the observed V vs V-I colour-magnitude diagram. Independent effective temperatures were obtained from automated profile fitting of the Balmer lines and by applying colour-Teff calibrations to the broadband photometry.
Cone search capability for table J/A+A/589/A61/table1 (Photometry and effective temperatures)